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LEAST ABSOLUTE VALUE ESTIMATORS
FOR ONE-WAY and TWO-WAY TABLES

by
R. D. Armstrong
E. L. Frome
This paper concerns itself with the problem of estimating the
parameters in a one-way and two-way classification model by minimizing
the sum of the absolute deviations of the regression function from the
observed points. The one-way model reduces to obtaining a set of medians
from which optimal parameters can be obtained by simple arithmetic mani-
pulations. The two-way model is transformed into a specially structureg
linear programming problem and two algorithms are presented to solve this
problem. The occurrence of alternative optimal solutions in both models

is discussed} and numerical examples are presented.
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: 1. INTRODUCTION ;
An important problem in statistics is to study the effect of one or two é

factors on a dependent variable. This problem can be formulated as a regression g'
analysis using dummy (0,1) variables to represent the levels of the factors, %%
and the resulting least squares analysis (LSQ) is well known [29]. Recently, ‘
the least squares approach has come under considerable criticism, and several
resistant estimation procedures have been proposed [ 1, 19, 20, 21,22 ]. Along
with the resistant estimation techniques has come an increased computational 4 ;i

burden, and in some cases subjective decisions concerning outliers [14,27,31]
weight functions [6], and score functions [21] must be made by the statistician.
Minimizing the sum of the absolute value of the residuals is a robust procedure
[19] which in some cases bypasses the latter difficulty. The computations
involved in obtaining least absolute value (LAV) estimates have been a major
deterrent to its use. This paper will demonstrate how LAV estimates can effi-
ciently be obtained for one-way and two-way tables. A second difficulty in LAV
estimation is the existence of alternate optimal solutions. For one-way and two-way
tables alternative optimal solutions will frequently exist. However, a unique
solution can be obtained by placing appropriate restrictions on the parameters.
From a data analytic point of view this may be regarded as an advantage since it
requires some careful thought in selecting additional contraints that will yield

p a "good" solution. In some situations this simple row-plus-column fit provides
a first step in data analysis. The fitted values and residuals are used to

y jdentify possible outliers or to suggest how an improved fit may be obtained

(see e.g. [1], [6]). The LAV estimates will also provide a good starting point

for resistant procedures that are iterative and require residuals from an
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jnitial fit to initiate the procedure.
Charnes, Cooper and Ferguson [12] appear to be the first to present a

practical approach to solve the general linear LAV problem. They demonstrated . ;

how the problem could be transformed into a linear programming problem and

thus solved by using the well developed theory of linear programming (LP).

They also proved the statistical consistency of the estimates for LAV or any

other norm-functional. Other papers primarily concerned with the use of LP

to solve LAV problems are [2,4,5,28,31,34 ]. The main point to be gleaned

from the more recent of these references is that a special purpose primal

simplex algorithm has proven to be the most efficient method for solving linear b 3
LAV problems. A reasonable alternative to the special purpose primal algorithm
is to take the dual of the original LP problem and solve it via an LP code with
simple upper bounding. Section 3 outlines this transformation for a two factor f?ﬁ
model while Wagner [32] gives a more detailed presentation for the general case. 5
Computational results [3] indicate that the dual approach takes approximately

four times as long as the special purpose primal algorithm, but the algorithm

for solving the dual has the definite advantage of being more widely available.

In Section 2, we demonstrate how LAV estimates can be obtained for a one

factor model without LP. In Section 3, two computer-oriented approaches for the
analysis of a two factor model using LP are presented. Both methods exploit the
topological structure of LP problem to provide efficient solution techniques.
Section 4 presents sufficient conditions for alternative optimal solutions to
exist when additional criteria are not present. Examples illustrating LAV es-

timation for one-way and two-way tables are given in Section 5.




2. ONE-WAY CLASSIFICATION MODEL

f;~ : Suppose it is hypothesized that observed values of a random variable
,f are affected by t levels of a certain factor. A statistical model to study
g; these effects may be stated as follows:

é, Vi Mt T te, $9), & osa B3 R ¥ 1, & visa nys where Y 18 the

k-th observation at the i-th level, uis a typical value, Ty is the effect

associated with the i-th level and @ik is an unobservable random "error."

The LAV estimates for p and Tys i=1,2, ..., t by definition solve
the following problem:
R )
Minimize z = I 1
i=1 k=1

i = (o + 7y)l (2.1)
An immediate difficulty arises because we have one degree of freedom in
choosing values for the parameters; that is, u or any one of the ri's
may be assigned an arbitrary value without affecting the optimal value
of z. The same difficulty arises in LSQ estimation, and is averted by
assuming that the total of the effects should be zero. Thus, the degree

of freedom is absorbed by the constraint:

t
Doty s 0 (2.2)
i=1

s T {52 o0

In a LAV analysis, this degree of freedom must also be removed by

an additional constraint, but now the form of the constraint is not so

obvious. To see this, consider the t disjoint problems:
o
M'ifﬁmize 1 lyik s 01|, i - 1’ 2, seey t’ (2-3)
k=1

where 0 =M + Tys S RIS




An optimal value for a;, say &i, is the median of the points Yik? k=l o2, .0

n,- It then follows that if we were using (2.2) as a constraint on the Ti'S,
the optimal solution would be:

b
i

™Mt

a; )t (2.4)
1

and %, =& -i,1=1,2,..¢t. (2.5)

The {i given by (2.4) is the arithmetic mean of t medians. One reasonable
alternative would be to choose ji to be the median of all observations, but

to parallel the LSQ analysis as closely as possible, we take a different
approach. First note that (2.2) is equivalent to taking up the degree of freedom
by choosing u and Tis i=1, 2, ..., t so as to minimize

t t 2

Lg% (ai-u) §

=1 i=1

while still providing LSQ estimates. Correspondingly, to obtain parameters

for the LAV estimate we minimize

™ e+
—

t
151 |Ti| = e Iai-ul (2.6)
while maintaining the minimum value for z.

When the optimal value of o is unique (i.e., the median of the points
Yig» k=1, 2, ...5 0y s unique) for all i, ii is the median of &,, i=1, 2, ...,
t and %i is obtained from (2.5). However, frequently the median of the yik's
is not unique but rather can lie anywhere within a continuous closed interval.
When this is the case, §i can be obtained as follows.

Step 1. Set U equal to the smallest lower bound of the intervals within
which the optimal value of the a;‘s must 1ie (unique values have the same upper

and lower bound.)

i i i
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Step 2. Increase the value of U until any further increase would place
more intervals completely below U than there are completely above U.

Step 3. Place L equal to the current value of U.

Step 4. Decrease the value of L until any further decrease would place
more intervals completely above L than there are completely below L.

A11 the values in the closed interval [L, U] are optimal for u subject
to the additional criterion (2.6). Let u* denote the median of all the
yik's and choose the point in [L, U] that minimizes |u-u* |. This criteria
provides an estimate that is as close as possible to the estimate of u that
is obtained under the minimal one parameter model (i.e. under they hypothesis
that all the Tils are zero). A similar procedure will be used in obtaining
estimates of the parameters in the two factor model (see section 5). Once
i has been chosen from within this interval, a; is chosen to be as close to
il as possible while remaining in the range of optimality for (2.3). The ri's

are then determined from (2.5).
This LAV estimate is unique. Although the additional criteria that were

added to force a unique solution are arbitrary, they are reasonable for this
situation. Other approaches, similar to this goal programming (constrained
regression) approach [ 8, 9, 11, 24 ] proposed here, can be used to define a
unique optimal solution or we could let #i = (L + U)/2. Unless these additional
criteria are rather complex, LAV estimates are easily obtained for a one-way
table. However, as we shall see in the next section, the extension of the LAV
approach to two-way tables is far more complex than the corresponding LSQ

extension.




3. TWO-WAY TABLE

3.1 Definition of Model

A two factor model arises when a second factor is introduced as follows:

Yige "wt gt Byt e

Thus, yijk is the k-th observation at the i-th level of the first factor and
the j-th level of the second factor; T, represents the effect of the i-th
level of the first factor (i.e. row effect), B; represents the effect of

the j-th level of the second factor (column effect), and u is a typical
value. LAV estimates of the parameters are obtained by solving the following

problem:

(o

g Sy
Minimize z Zi=1Z5=1

n.

zklj ‘Il .Vijk e (]J + Ti + BJ-) I. (3.1)
There are two degrees of freedom in assigning values to u, Tys and Bj;

thus, restrictions should be added to the problem. In the corresponding

LSQ analysis (2.2) and
c

£ . =0 3
=1 8 (3.2)
are appended. This is equivalent to providing LSQ estimates which minimize
r 2 & 2
Bjel Tt Egmy By

Analogously, in the LAV analysis we provide estimates that minimize

r
=1

(o

z |t |+ 25 |8

i (3.3)
subject to the optimal value for z in (3.1) being maintained. As in the
one-way analysis, this additional criterion does not necessarily provide a
unique solution (see Section 5 for an alternative). Further restrictions,

or a completely different set of criteria, may determine a unique solution.




Our purpose is to present what we feel are reasonable conditions for LAD

estimates to satisfy.

3.2 Computat1ona1 Approaches

Before (3 3) is cons1dered two computer oriented approaches to obtain
an optimal solution to (3.1) will be discussed. We again make the transfor-

mation a; = u+ 15, and restate (3.1) as:

Minimize z = 2,Z; 3k | Yijk - (a; + Bj) b (3.4)
Problem (3.4) can be written as a linear programming problem
Minimize I,I.5, (df;, + ds 5k ) (3.5)
subject to:
ap + By - Yyjk - gkt Kk - 0

+
d jk 20, d ik 20,

QLA (RS DR LA S L ' (RS "ij’

where d?jk and dfjk are the positive and negative deviation of the regression

equation from the observation y.. , respectively. Problem (3.5) is not

ij

tractable in its present form for a direct application of the simplex algorithm.

The main reason for this is that the number of constraints is equal to the

number of observations which may give rise to an excessively large basis

matrix. This difficulty can be overcome by taking the dual of (3.5) which is

given by:
Maximize ZiZjZk Yijk ™ijk (3.6)
subject to:
Zikmigk T
z zk"njk 20,351, ...;s €

-1 < 1 ’ i=1’ sy l"; j=1; ceey C; k=1’ ceey nij.

< TT-ijk -

PRSI AR i
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By making the transformation n°.. = m.. + 1 (3.6) can be written in

ijk ijk

a more standard linear programming format
i yijk)’ (3-7)

Maximize Zizjzk (yijk ST

subject to:

%‘zk“ijk = zj"ij B (8 SR IR

: = Z'n'~ ’ j=1, e ey C,

L% Mk = My

and 0 < “{jk < 2 s 1=, e vy el iss 63 kKRl c.as N

13"

It can now be recognized that (3.7) is a capacitated transportation
problem [10] with r origins and ¢ destinations except that, because of
multiple observations within cells, there is more than one path from origin
i to destination j. This extension can be incorporated into the standard
LP algorithm by only considering nfjk's for entry into the basis when all

i
other LP variables corresponding to observations in cell (i,j) with a value

i
indicate that transportation problems can be solved approximately 150 times

larger than y'jk are at their upper bound. Computational results [15,16]

faster by using a special purpose primal simplex code as opposed to a general
purpose state-of-the-art LP code. Thus, considerable savings can be derived
by recognizing the special structure of (3.6).

Once (3.6) has been solved, optimal values for the @S and Bjs in (3.4)
are given by the dual variables or simplex multipliers for the first r + ¢

constraints. There is, however, one degree of freedom in choosing the qis

and Bj's, and a second degree of freedom in assigning values to the

48 and u. These degrees of freedom can be taken up by satisfying
criterion (3.3). We delay the discussion of how to accomodate (3.3)

until after the primal approach to (3.5) has been presented.
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For the general problem of obtaining parameters for absolute devia-

¥ tions estimates, it has been shown [3, 4, 30 ] that solving the general

5 AR
oy

‘?5‘ - case equivalent of (3.5) directly with a special purpose primal algorithm

R BN R e AR | B

is computationally the most efficient approach available. There is no
reason to believe that this would not also be true here as the structure
of the problem can still be utilized to perform the operations of the

algorithm without ever inverting a matrix explicitly. This algorithm,

shictiatt sonloies R0 ¥

1 modified to take advantage of (3.5)'s structure, will not be developed
il here, but a brief overview is given to indicate the use of techniques found

in solving transportation problems and to state a formula required in the

R TN 3
iy

next section.

We begin by restating the constraints of (3.5) in matrix notation as

follows:
Ay -Y-D" +D" =0, (3.8)

p¥ 20,0 20, (3.9)

5 Bc), and A is an (Zizj"ij) by (r+c) matrix

of 0's and 1's with a single dependent column. It is clear from the objec-

where y~ = (al, cees s Brsoees

tive function of (3.5) that (3.8) can also be written as:

Y-D sy YD, (3.10)

= | . . s . :
| 3 The algorithm at any stage works with a basis consisting of (r+c-1) rows of
A. To distinguish between the basic and nonbasis rows of A we partition

A, Y, D", and D7, and rewrite (3.10) as

+
Y D BlY [y D.
. bj_ 2 < < | b+ ?
ol [Pl (N Yol PPn :
L -

where B denotes the basis and N the remaining rows of A. If we let A = By,

then the constraints (3.8) become

T — o -
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+ -
Yp = Dy sAs Yy + Dy
+ #
Y. ~h 2N

X< Yn + Dn s
where B# is a generalized inverse of B. The current solution is A* = Yb -
D; = D; =0, y* = B#A*, and the deviations in the nonbasic rows are as small
as possible based on A* and the constraints. The structure of B allows it
to be stored as a spanning tree [15] similar to that of the basis of a
transportation probiem. This allows us to use the triangularity of B (after
a dependent column is dropped) to solve By = A without explicitly obtaining
a B#. Thus, B# is not required to obtain a basi¢ solution; and, in fact,
is never needed.

The next step in the algorithm is to determine if an increase or
decrease in any Ai away from its current value A? will decrease the objective

value. The objective function rate of change is 1 + ei or1l - ei when Ai is

increased or decreased, respectively, where 6 = (el, Bps « + s 9r+c-1) is

given by
L o ts°N - 5N e
0 szjB ZijB (Zij Zij)B
= +
= N, - Z.N.. »
or B = IN;- N, (3.11)

In (3.11) the + and - superscripts indicate summation over rows of N with
positive and negative deviations, respectively, When a nonbasic row has a
zero residual it is classified by the algorithm as a positive or negative zero;
thus, every nonbasic row will be included exactly once in the above

summation. Again the triangularity of B allows us to obtain @ without

B# (just as in the transportaticn algorithm a primal solution is obtained).
Equality (3.11) will be important in the next section where conditions for

alternative solutions to the LP problem (3.5) are discussed.




o
Since we are minimizing the sum of the absolute deviations, a basis

change would be made if Ieil > 1. Hence, the current solution is recognized

as optimal when [6.] <1, i=1,2,...,r+c-L

3 ; The pivot rule of Barrodale and Roberts [4 ] which may combine several

standard simplex pivots into one is used to determine the row of N to enter
the basis. The details of implementing this rule while effectively utilizing
the structure of B and N will not be given here, but the major computational
step is similar to calculating the ratio in a dual simplex transportation al-

gorithm |17].
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3.3 A Secondary Criterion for Choosing the Parameters Estimates

The remainder of this section will be devoted to describing how the secondary

<< IR i SRR s ok i

e

criterion (3.3) can be considered within the framework of an LP algorithm. The

procedure can be utilized on a revised version of (3.5) or (3.7), and is similar

SR R

to the perturbation method of Charnes [7 ]. Like Charnes' method an arbitrarily
small positive number e will be used in the description, but the most efficient
implementation would never assign a value to € and all calculations involving €
are performed implicitly. However, by placing € equal to a specific value addi-
3 tional computer coding is avoided. We begin by noting that (3.3) can be expressed
in LP form as
rEc * -

Minimize 2j=1 (GJ. + 8.}, (3.12)

£ subject to:

5 = Gi + 61 b 0 'Y i=1’ coey r

-6 -+6 -=0’j=1’ -..,C (3-13)

! r+J r+J

$ j
4 .
o

i

2 0 and 6j 20 s =k g TG

+ -
where Gj and Gj are the positive and negative deviations of the effects from zero.

Problem (3.12) is only of secondary concern, as we wish to always obtain

fﬂ an optimal solution to (3.5). The desired optimal solution is given in a limiting

sense (e>0) by solving
+ - r+c +

Minimize 2,3,2, (dijk + dijk) * I (esj + scj) ’ (3.14)

subject to the constraints (3.8), (3.9), and (3.13).

siaal Problem (3.14) is not in the form where the columns have the exact structure

that the rows of a transportation problem possess. To obtain the desired format

let Bc+1 = -y and create a "dummy parameter" Bc+2 (this is a variable in the LP
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problem). The problem then becomes ; |
+ - r+c o - f :
| Minimize zizjzk (dijk + dijk) + 2j=1 (esj + edj), (3.15) :
1 ‘
E % ) subject to:
f - + -
o Oy~ Fege -~ Segk " Ygn D ey b
J=1, s C»
: k’l’- s nij’
é .o
. 01*3c+1‘6i+61=0 ,1=1, ,r,

Bc+2 + Bj 2 6r+j + 6r+j = 0 £ j=1, s oy C; k=1, CECIUAEY ni

] '20’ ‘=’o-o, +.
GJ >0 6J =1 r+c

where the degree of freedom in assigning values to the parameters is absorbed by

always placing Bc+2 = 0.

The algorithm described to solve (3.5 ) directly can be used to solve (3.15)

with a slight modification to account for a weight of e, rather than one, on the

deviations of T, and Bj away from zero. Also, by taking the dual of (3.15) and

by making the lower bound on the variables in this dual problem zero, a capaci-
tated transportation is again created. This can, of course, be solved with a
standard code; however, care must be taken to ensure Bero = 0 when working back
to the optimal solution to (3.15).

The formulation just described takes care of the two degrees of freedom at

the expense of creating an additional "source" and an additional "destination"

3 R '»A‘-gxs- CF o R

in the transportation problem, and the possibility of alternative optimal solutions
has been reduced considerably. The problem of alternative optimal solutions to

(3.3) is discussed in the next section along with statements of sufficient conditions

for alternative optimal solutions to exist.
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4. Alternative Optimal Solutions

A disturbing aspect of LAV estimation for two-way tables is that alternative
optimal solutions frequently occur and, decidedly different estimates are obtainable.
This difficulty may be averted by specifying additional criteria for the estimates
to satisfy. It is the purpose of this section to indicate that alternative optimal
"fits" are to be expected in analyzing two-way tables via LAV procedures if (3.1)
is the sole criterion. This serves to emphasize the importance of "good" additional
criteria.

It is well known that the median of an even number of observations is unique
only when the two middle observations have the same value. The parameters for
the one-way model (2.3) are obtained by taking the median of t sets of observa-
tions and the values will be unique only when all t medians are unique. ¢
However, a unique solution can always be obtained by adding the additional
restrictions described in section 2.

With respect to the two-way model, it can be shown that an LP solution to
(3.5) is optimal if the 6 obtained by solving (3.11) satisfies

-1 < 6,51, i=1, 2, ..., r+c-1.
Furthermore, the basis B is a unique optimal basis only when

-1« 6;< 1, 1=], 24 «ovs TC=13
in other words, an alternative optimal basis exists if at the completion of the
algorithm 0, equals -1 or +1 for any i. But because Nj is a vector of 0's and
1's, and because B is a unimodular matrix [18], 6 will always have integer
components. Hence, at optimality, ei will equal either -1, +1 or 0. This means
that the current optimal basis is unique if and only if all the components of
6 are zero, and this will only be true when

- +
ZJ.Nj - ZJ.NJ. = 0 (4.1)
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Condition (4.1) forms the foundation for proving the theorem of this section.
It might be well to point out at this time that all our results relate only to
alternative optimal basic matrices--not to alternative optimal fits. However,
an alternative optimal basis is equivalent to an alternative optimal fit when-
ever an optimal fit interpolates exactly r+c-1 points. Theoretically, for fixed
sample size this will occur with probability one whenever the observations are
taken from a continuous population.

The following theorem is concerned with the special case of two-way classi-

fication model where "ij=1 for all i and j.

Theorem 4.1. The LP problem (3.3), which is equivalent to the problem of
finding LAV estimates for a two-way classification model with exactly one
observation per cell, will have alternative optimal basic matrices whenever the
minimum of r and ¢ is even.

Proof. Suppose that the LP problem has been solved and an optimal basic
matrix obtained. For this matrix to be a unique optimal basic matrix, condition
(4.1) must be satisfied. This occurs only if for each nonzero component from
an Nj;associated with a positive deviation there corresponds a nonzero component
from an Nj associated with a negative deviation. In other words, the nonbasic
rows of A must contain an even number of nonzero coefficients in each column
because summing an odd number of plus or minus ones will never yield zero. The
proof of the theorem will consist of showing that whenever the minimum of ¢ or
r is even, there is at least one column with an odd number of nonzero components
(#1's) in the nonbasic rows.

For explanatory purposes, we assume rxc, but the proof follows in an
analogous manner if the reverse is true. There are r+c-1 rows of A in the basis

B and, because B forms a basis, every column of B must have at least one nonzero

entry. It is noted that B is a submatrix of A and each row has one and only one
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nonzero entry in the first r components, and one and only one non-zero entry in
the last c components. Also, each of the last c¢ columns of A has exactly r

1's with the remaining coefficients being 0's. In order to satisfy (4.1)

there must be an even number of 1's in each of the last c columns of N.

Thus, since r is even, there must be an even number of 1's in these ¢ columns
of B. But each column of B must have at least one nonzero entry, there must
be at least two 1's present. This would require B to have at least 2c > ¢ +

r -1 rows. Therefore, at least one of the last c columns of B has a single
nonzero entry. The proof of the theorem now follows from the inability to
satisfy (4.1).

It is not difficult to derive examples of two-way tables with a unique
optimal basis for the LP equivalent. Consider the two-way table of exhibit 1.
This example has a unique optimal basis matrix with the optimal fit interpolating
observations 3, 4, 5, 6, and 7. However, alternative optimal basic matrices
exist if the 6 and 8 interchange position. Certainly our computational
experience would indicate that, even if the conditions of theorem 4.1 are not
satisfied, alternative optimal fits are more likely to appear than not.

Furthermore, a unique optimal basis matrix does not clearly define the
estimates for the parameters. There are two degrees of freedom that provide
us with the ability to arbitrarily choose values for two parameters and remain
optimal. In the previous sections we have proposed additional criteria that

deal with this problem, and we will discuss this matter further in the next

section via numerical examples.
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5.1 LAV Analysis of One-Way Table

To illustrate the application of the algorithm described in Section 2,
we will use the Nebraska voting data shown in Exhibit 2 [31, chap. 19]. In
this section two separate one-way analyses will be carried out. These results
are used in Section 5.3 where the same data is used to illustrate the LAY
analysis of a two-way table.

First, we consider the rows (i.e. counties). The median intervals are
shown in Exhibit 3, and using the algorithm in Section 2, we obtain (L,U)=
(325,342). Since the median u*=338 we set p=338 and obtain the fitted values
and effects shown in the last two columns of Exhibit 3. The same procedure
is then applied to the columns (i.e. years) and the fitted values and effects
are shown in Exhibit 4.

In the LSQ analysis the best estimates of the row and column effects
(along with the overall mean) provided the solution to the two-way analysis.
For the LAV analysis this is not true, but in Section 5.3 we propose obtaining
the LAV estimates for the two-way table that are as close as possible to these
restricted fits. It will then be possible to assess the relative importance

of the row effects after column effects have already been included in the

model.
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5.2. Some Small Examples for Two-Way Tables

To illustrate the difficulties arising in choosing values for the
parameters in the two-way model, we consider the table given by exhibit 5.

We begin the analysis by obtaining LAV estimates with the additional restric-
tions Tyt o 0 and Bl t 8= 0. Optimal parameter values can be obtained
from the LP by considering any extreme point defining a hyper-plane passing
through three of the four observations. Thus, four optimal extreme point
solutions are possible and are given by exhibit 6. A1l optimal solutions
are given by convex combinations of these four points. Clearly, a great
deal of discrepancy is possible among optimal solutions. Considering only
extreme point solutions, the observation which the hyperplane does not inter-
polate will have a residual with absolute value 998 and the other points will,
of course, have a zero residual. Thus, the LP solution could indicate any
one of the four observations to have an unduly large residual and make it a
candidate for consideration as an outlier.

If we perform the LAV analysis on the same table with additional cri-
terion (3.3) rather than (2.2) and (3.2), a unique solution (u = 1, Xy ®
L e Bl sl T 0) is obtained. An inspection of the residuals now indicates
that the observation in cell (2,2) might be considered as an outlier.

The two by two table of exhibit 5 is an extreme case and was presented
to indicate what could occur in the LAV analysis of two-way tables if
caution is not exercised. Generally, such widely divergent solutions
will not be available--regardless of the additional criteria employed
to absorb the degrees of freedom.

The next example (exhibit 7) is a four by four table from Tukey
[ 34 chp. 22]. With the additional criterion (3.3) appended to the

2 i 5
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problem, eight optimal extreme point solutions were found. These are given
in exhibit 8. The complete set of optimal extreme point solutions can be
generated (see [18], p. 166); however, the amount of work required to do
so is generally prohibitive. No attempt was made to generate all optimal

extreme solutions to the two-way table in exhibit 7.

It is nofed that all the solutions of exhibit 8 indicate the row

effects being small relative to the column effects. Also, the residual f; ‘

for the outlier of cell (3,2) is 270 for all but the last solution where % 5
it is 271, .
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5.3 LAV Analysis of a Two-Way Table

In Section 5.1 we considered the one-way analysis of the Nebraska voting
' data. The two-way analysis of this data using LSQ is shown in Exhibit 9 .
i The LAV estimates are obtained by solving (3.1) with the additional criterion

that we minimize

r c
hup*] + 2 1~ 1,* +2 18, - B.:*|, (5.1)
o T o
% subject to the optimal value for z in (3.1) being maintained. In (5.1), the
g * superscript denoted the LAV estimates that are obtained for the one-way fits

(see Section 5.). The robust elementary analysis obtained using LAV is shown
in Exhibit 10. The stem-and-leaf plots, hinges, midspreads, and side values
» for the residuals obtained from the LSQ and LAV fits are shown in Exhibit 11,
? and the large (outside, i.e. past the side values) residuals are identified

in Exhibit 12.

Tukey [31, chap.19] obtained a resistant elementary analysis of this data

i SRRl B

using pomedian polishing on the LSQ analysis (see Exhibit13 ). The pomedian

procedure leads to residuals that are "nearly balanced" in sign in each row and

oy

column. Note that the median of each row and column of the LAV residuals in

Exhibit 10is zero.

5.4 Quality of Fit for Two-Way Table

In a LSQ analysis of a two-way table the importance of the row and

l' column effects is measured in terms of the decrease in the sum of squares

# that occurs when the row (column) effects are included in the model. For

f?:; the LAY analysis it is also possible to obtain an indication of the impor-
tance of the row and column effects. First, we obtain Z(u*) = zizj ly1j~ u*l
= 13661 Next calculate Z(u*,B*) = 6282, Z(u*,t*) = 12531, and Z(},t,B)
= 4240. Then using an approach suggested by McNeil and Tukey [26], we

determine that the column fit accounts for 100[ 1 - (6282/!3661)2 ] = 78.9%

e p— PR
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of the total variation, measured on a size-squared scale in terms of
the sum of the absolute deviations. Similarity, 15.9% of the total
variation is explained by the column Fit, and the row-plys-column fit
accounts for 90.4% of the total variation. Thus, we are able to conclude
that the size of the residuals is considerably reduced if both row and
column effects are included in the model. .
As is the case in an unbalanced LSQ analysis the reduction in the
objective function that occurs when additional parameters are added to
the model is order dependent. Consequently, this heuristic approach to
evaluating the relative importance of a given subset of parameters is

2 values in the LSQ analysis. This approach is

similar to the useof r
suggested when the analysis is essentially exploratory in nature. We are,
on the one hand, prepared to obtain evidence that a simpler model may
adaquately fit the data. At the same time we are ready to look at the
residudls from a robust row-plus-column fit using diagnostic plots or
other techniques that could suggest that outliers are present, or that

an improved fit may be had by adding terms to the model or by reexpressing

the data.
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6. Discussion

It is generally recognized that after obtaining a simple row-plus-column
fit for a two-way table the residuals should be carefully analyzed. Gentleman
and Wilk [13] have considered the effect of one or two outliers superimposed
on a basic additive model with independent normal fluctuations with mean zero
and constant variance. Their results indicate that when one outlier is present
the judicious use of half-normal plotting provides a complete basis for data-
analytic judgements. They further find that direct analysis of residuals
(from a LSQ fit) is not reliably indicative of the existence of peculiarities
when two outliers are present. Gentleman and Wilk [14] have also considered
the problem of multiple outliers, and proposed methods for identification of
the "K most likely outlier subset" (where the maximum possible value of K
must be known). Their approach considers to what extent a p-parameter model
analysis can be statistically improved by selective reduction in the size (n)
of the data. Their method results in a LSQ analysis of the "good data".

In many situations the form of the model is only tenative and a diagnostic
plot of the residuals is required [3]1]. The diagnostic plot may suggest that
an improved fit can be obtained by either adding to the model or reexpressing
the y's. When there are several possible departures from the ideal additive
model for a two-way table, the importance of obtaining a robust fit is increased
if attempts to improve upon the conventional LSQ analysis are to be successful.
Thus as McNeil and Tukey [26] have shown, it is possible to begin with a simple
row-plus-column fit of a two-way table using both LSQ and LAV. If the unknown
eij's follow a Gaussian Distribution; then we expect that the residuals from
both fits should appear to be near Gaussian, with somewhat less stretched tails
for the least square residuals. If the eij's are from a tail-stretched distri-

bution, the residuals should be tail-stretched--the LSQ residuals much less
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than the eij‘s and the LAY residuals slightly more. Tail-stretched residual

distributions may also be the result of an inadaquate model. Consequently,

if the LSQ and LAV anlayses are clearly different then further careful
analysis is required. It is important tonete as Mallows [25] has pointed
out, that our understanding of robust techniques and the behavior of the

residuals that they generate is limited. Certainly, the results presented

in this section indicate that good judgement must be applied by the data
analyst obtaining a sensible LAV fit.

b ae
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3 Exhibit 1. Two-way table with a i
3 unique optimal LP s
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i Exhibit 2. Nebraska Voting--Raw % Democratic for
& 11 Counties in 12 Presidential Elections (unit = .1%)
:? ; - Year
E | County '20 '28 36 ‘44 '52 '60
' DO 353 358 580 757 544 365 395 337 189 167 236 3% |
D1 323 252 236 669 396 267 238 257 149 148 138 290 3
g : Bl 288 302 305 619 510 397 372 411 234 268 279 389 -
g » D2 379 372 270 606 497 363 3BB 433 196 223 251 3
‘ D4 342 226 264 626 510 407 404 496 230 264 222 374
B4 270 291 247 569 450 354 325 374 218 259 229 410 5
. ; D5 228 177 150 553 426 M9 272 472 117 280 225 336 5
.f B5 270 237 227 561 425 352 340 360 179 232 189 310
j D6 265 196 165 547 472 336 313 436 195 219 226 388
E B7 322 257 454 661 513 384 379 454 253 307 370 462
D7 270 191 352 776 526 463 442 553 337 358 360 439

Source: Tukey, J. W. (1971). Exploratory Data Analysis, II. Addiso-Wesley,

Exhibit 3. LAV One-Way Analysis of Counties
(i.e. rows of Exhibit 2) for the Nebraska Voting Data

County Median Interval Fit Effect
; D5 (240,272) 272 -66
2 D1 (252,257) 257 -81
| D6 (265,313) 313 -31
E B5 (270,310) 310 -28
B4 (291,325) 325 -13 3
Bl (305,372) 338 0 :
D4 (342,374) 374 36
2 DO (353,358) 358 20
3 g D7 (360,439) 439 101
£ D2 (372,379) 379 4]
% B7 (379,384) 384 46

Note: The Order has been changed to illustrate the Procedure for
obtaining the interval %

L,U) = (325,342).

oS
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Exhibit 4. LAY One-Way Analysis of Years (i.e. columns)

e

for the Nebraska Voting Data

Year
'20 '28 '36 ‘44 '52 '60
effect -50 -8 -74 281 159 25 7 95 -142 -98 -109 51 ~§

fit 288 252 264 619 497 363 345 433 196 240 229 389




Exhibit 5. Sample two-way table with a single outlier.

Extreme point
solution

S W N -

Exhibit 6.

H 53
500 -499
1 -499
500 0
1 0

499
499
0
0

-499
-499

499
499

Optimal extreme point solutions to the two-way
table of exhibit 5 with the constraints t
and Bl + 82 = 0 added.
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Solution i

00 N OO O AW N =

738
742
758
758
758
738
741
758

Exhibit 8.
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734
725
763
738

793
716
758
761

Sample two-way table

from Tukey [28 chp.22].

718 1@
725 781
704 1035
726 765
Exhibit 7.
1 T2 >
-4 -1 0
-8 -1 0
-4 -3 0
-8 -1 0
-4 0 0
-4 0 0
7 0 0
-7 0 0

Table of eight optimal extreme point solutions for the

-~ O O O O OO »

27
23

27
23

LAy estimation problem obtained from exhibit 7. with
criterion (3.3) added.

20
16

20
i




, County
|
' DO
! D1
; Bl
D2
D4
. B4
E’( D5
I B5
! B7
eff
fit
County
DO
D1
B1
D2
D4
B4
D5
B5
5 D6
B7
) D7
eff
fit
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Exhibit 9. Elementary Analysis by Means (i.e. LSQ) of the
Nebraska Voting Data. (unit = .1%)
‘20 '28 '36 ‘44 ‘52 '60 eff fit
15 61 255 88 27 -40 -40 -117 -63 -115 -49 -23 38 387
91 61 8 106 -14 -31 -41 -91 3 -28 -41 -23 -69 280
-29 26 -7 -28 15 14 9 -21 4 8 16 -8 16 365
62 96 -42 -41 2 -20 25 0 -3¢ -37 -13 2 16 365
26 -49 -47 -20 16 25 42 64 0 5 -41 -22 15 364
-15 47 -33 -46 -13 3 -6 =27 20 31 -3 45 -15 334
-25 -35 -98 -30 -5 30 -27 104 11 44 26 3 -48 301
11 19 -27 -28 -12 27 3% -15 7 30 -17 -29 -42 307
-0 -28 -96 -49 29 5 2 55 16 11 14 42 -36 313
-31 -55 105 -23 -19 -3 -21 -15 ~-14 10 70 28 53 402
-104 -142 -18 71 -26 23 21 63 49 40 39 -16 73 422
-48 -89 -53 283 130 18 -2 68 -135 -105 -101 32 349 0
301 260 296 632 479 367 347 417 214 244 248 381 0 -349
Exhibit 10.Nebraska voting data from exhibit 2
ROBUST elementary analysis by LAV (unit = .1%)
Election

'20 '28 '36 ‘44 '52 '60 eff fit

5 81 322 144 50 -3 0 -83 -30 -85 -13 0O 7 345

128 73 67 154 0 -3 -9 -65 28 -6 -13 -8 -0l 247

-25 gy 22 <10 0. 13 11 <25 <} 0 14 -23 23 361

79 92 0 -10 0 -8 40 10-26 -32 -1 O 10 348

33 -63 -15 1. 4 27 47 64 -1 0 -39 -34 19 357

-7 34 0 -24 -24 6 U =26 19 27 0 A/ =13 325

-9 -40 -57 0 -8 41 -13 112 18 48 36 0 -53 285

13 0 0 -12-29 24 3% -20 0 20 -20 -46 -33 305

0 -49 -70 -34 10 0 0 48 8 -1 9 248 -25 313

-9 -54 153 14 -15 -18 0 U 0 21 & 3¢ 41 379

-122 -181 -10 68 -63 g 2 3B .2 11 6<% I 440

-48 -68 -78 268 149 23 0 75 -126 -93 -96 51 338 0

290 270 260 606 487 361 338 413 212 245 242 389 0 -338

— - I“.I..“M- O i
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Exhibit 11. Analysis of The 132 Residuals Obtained

from the LSQ and LAV’ Two-way Analyses.

LSQ

LLLL
751

3

4

9771580911
043914957
9487809815062772229
3932169543375
7360038
0335923368524
51516749161254
669573526
0151090
7255153

5

21143

4!

9

16

HHHH

High Low

256 -104
107  -142
107 -117
104 -114

and +26

53
an

h
d +79

and

Hinges
Midspread
Side Values
Number Qutside

TOONOOTHWN

LAV
LL

35

0

335

472

096

40294

5449560603
0002333558
7990000833890011060113000
09001004600002080009
34039098946
012344778

3458642

10788

60

784

93

17

2

HHHHHH

High  Low

-1

322 -181
154 -122
153
144
124
112

3 and +23h
36h

~4%h and 60

1

1 and 14

e e
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Exhibit 12 Outside Residuals from row-plus-Column Fits Using
g i LSQ (see Exhibits 9 and 11) and LAD (see Exhibits 10 and 11)

'20. 128, s o OIS ‘52. . ‘60.
LSQ

: T SRERRENG R O R e S iR G
§ = T e T - g o gt i Sl
BY o i e n .

D2 . 9
W
7 AR e SR A - Lok
RS ERPMITY e S G i
BE . o i o Rl e
06 . . <98
B oo Nk
' D7  -104 142

ST

AP

Mt

LAV

) SR 81 322 144 . ; . -83 . -85

IB)} 124 73 67 154 . ’ . -65

e e S8 5 . . ‘ .

p4e . -63 . . - 5 . 64

B4 . , . . . . . p

5 . . -57 . . ; . 112

BS . ; . . . - . .

pe . . -70 . . . . . ; . .
7 -54 153 . . ; . . . . 87
D7 -122 -181 . 68 -63
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